Муниципальное бюджетное общеобразовательное учреждение «Северская гимназия» РАССМОТРЕНО СОГЛАСОВАНО УТВЕРЖДЕНО Руководитель МО Заместитель директора по учебно-воспитательной работе Директор Яковлева М.А. Приказ № 483/1от «30» 08.23 г. Высоцкая С.В. Приказ № 483/1 от «30» 08.23 г. Атапина Н.Ю. Приказ № 483/1 от «30» 08.23 г. Рабочая программа по курсу внеурочной деятельности «Подготовка к ОГЭ по математике» для 9 классов Срок реализации – 1 год Яковлева Милена Анатольевна Учитель математики Северск - 2023 Аннотация Данная методическая разработка посвящена проблеме подготовки к ОГЭ по математике выпускников 9 классов. В нее входят задания трех модулей («Алгебра», «Геометрия», «Реальная математика»), подобные экзаменационным, подготовительные задания для отработки элементов каждой темы, варианты для самостоятельного выполнения. Данная разработка поможет обучающимся эффективнее подготовиться к сдаче экзамена. 2 Пояснительная записка Данная программа предназначена для обучающихся 9-х классов общеобразовательных учреждений и рассчитана на 34 часа. Она предназначена для повышения эффективности подготовки обучающихся 9 класса к основному государственному экзамену по математике за курс основной школы и предусматривает их подготовку к дальнейшему обучению в средней школе. Программа курса сочетается с любым УМК, рекомендованным к использованию в образовательном процессе и согласована с требованиями государственного образовательного стандарта и содержанием основных программ курса математики основной школы. Программой школьного курса математики не предусмотрены обобщение и систематизация знаний по различным разделам, полученных учащимися за весь период обучения с 5 по 9 класс. Элективный курс «Математика: подготовка к ОГЭ» позволит систематизировать и углубить знания учащихся по различным разделам курса математики основной школы (арифметике, алгебре, статистике и теории вероятностей, геометрии). В данном курсе также рассматриваются нестандартные задания, выходящие за рамки школьной программы (графики с модулем, кусочно-заданные функции, решение нестандартных уравнений и неравенств и др.). Знание этого материала и умение его применять в практической деятельности позволит школьникам решать разнообразные задачи различной сложности и подготовиться к успешной сдаче экзамена в новой форме итоговой аттестации. Каждое занятие, а также все они в целом направлены на то, чтобы развить интерес школьников к предмету, познакомить их с новыми идеями и методами, расширить представление об изучаемом в основном курсе материале, а главное, рассмотреть интересные задачи. Этот курс предлагает учащимся знакомство с математикой как с общекультурной ценностью, выработкой 3 понимания ими того, что математика является инструментом познания окружающего мира и самого себя. Если в изучении предметов естественнонаучного цикла очень важное место занимает эксперимент и именно в процессе эксперимента и обсуждения его организации и результатов формируются и развиваются интересы ученика к данному предмету, то в математике эквивалентом эксперимента является решение задач. Собственно весь курс математики может быть построен и, как правило, строится на решении различных по степени важности и трудности задач. Цель курса: систематизация знаний и способов деятельности учащихся по математике за курс основной школы, подготовка обучающихся 9 класса к основному государственному экзамену по математике. Успешная сдача ОГЭ, переход в 10 класс по выбранному профилю(при необходимости). Задачи курса: - обучающие: (формирование познавательных и логических УУД) Формирование "базы знаний" по алгебре, геометрии и реальной математике, позволяющей беспрепятственно оперировать математическим материалом вне зависимости от способа проверки знаний. Научить правильной интерпретации спорных формулировок заданий. Развить навыки решения тестов. Научить максимально эффективно распределять время, отведенное на выполнение задания. Подготовить к успешной сдаче ОГЭ по математике. - развивающие: (формирование регулятивных УУД) умение ставить перед собой цель – целеполагание, как постановку учебной задачи на основе соотнесения того, что уже известно и усвоено учащимся, и того, что еще неизвестно; 4 планировать свою последовательности работу - планирование промежуточных целей с – определение учетом конечного результата; составление плана и последовательности действий; контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона; оценка - выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения; - воспитательные: (формирование коммуникативных и личностных УУД) формировать умение слушать и вступать в диалог; воспитывать ответственность и аккуратность; участвовать в коллективном обсуждении, при этом учиться умению осознанно и произвольно строить речевое высказывание в устной и письменной форме; смыслообразование т. е. установлению учащимися связи между целью учебной деятельности и ее мотивом, другими словами, между результатом-продуктом учения, побуждающим деятельность, и тем, ради чего она осуществляется, самоорганизация. Методы и формы обучения Методы и формы обучения определяются требованиями обучения, с учетом индивидуальных и возрастных особенностей учащихся, развития и саморазвития личности. В связи с этим основные приоритеты методики изучения курса: обучение через опыт и сотрудничество; учет индивидуальных особенностей и потребностей учащихся; интерактивность (работа в малых группах, ролевые игры, тренинги, вне занятий - метод проектов); 5 личностно - деятельностный и субъект – субъективный подход (большее внимание к личности учащегося, а не целям учителя, равноправное их взаимодействие). Для работы с учащимися, безусловно, применимы такие формы работы, как лекция и семинар. Помимо этих традиционных форм рекомендуется использовать также дискуссии, выступления с докладами, содержащими отчет о выполнении индивидуального или группового домашнего задания или с содокладами, дополняющими лекцию учителя. Возможны различные формы творческой работы учащихся, как например, «защита решения», отчет по результатам «поисковой» работы на образовательных сайтах в Интернете по указанной теме. Таким образом, данный курс не исключает возможности проектной деятельности учащихся во внеурочное время. Итогом такой деятельности могут быть творческие работы. Предлагаемый курс является развитием системы ранее приобретенных программных знаний, его цель - создать целостное представление о теме и значительно расширить спектр задач, посильных для учащихся. Все свойства, входящие в курс, и их доказательства не вызовут трудности у учащихся, т.к. не содержат громоздких последующее. При выкладок, а каждое направляющей роли предыдущее готовит учителя школьники могут самостоятельно сформулировать новые для них свойства и даже доказать их. Все должно располагать к самостоятельному поиску и повышать интерес к изучению предмета. Представляя учащимся возможность осмыслить свойства и их доказательства, учитель развивает геометрическую интуицию, без которой немыслимо творчество. Таким образом, программа применима для различных групп школьников, в том числе, не имеющих хорошей подготовки. В этом случае, учитель может сузить требования и предложить в качестве домашних заданий создание творческих работ, при этом у детей развивается интуитивно-ассоциативное мышление, что несомненно, поможет им при выполнении заданий ОГЭ. 6 Основная функция учителя в данном курсе состоит в «сопровождении» учащегося в его познавательной деятельности, коррекции ранее полученных учащимися ЗУН. ОСНОВНОЕ СОДЕРЖАНИЕ (34часа) Арифметика Натуральные числа. Степень с натуральным показателем. Рациональные числа. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем. Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный. Действительные числа. Квадратный корень из числа. Корень третьей степени. Понятие о корне n-ой степени из числа. Действительные числа как бесконечные десятичные дроби. Сравнение действительных чисел, арифметические действия над ними. Этапы развития представлений о числе. Измерения, приближения, оценки. Размеры объектов окружающего нас мира (от элементарных частиц до Вселенной), длительность процессов в окружающем нас мире. Представление зависимости между величинами в виде формул. Выделение множителя – степени десяти в записи числа. Алгебра Алгебраические дроби. Арифметические операции над алгебраическими дробями. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного 7 трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях. Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения, Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители. Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Переход от словесной формулировки соотношений между величинами алгебраической. Решение текстовых задач алгебраическим способом. Числовые последовательности. Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем. Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей. 8 Координаты. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем. Геометрия Начальные понятия и теоремы геометрии. Возникновение геометрии из практики. Геометрические фигуры и тела. Равенство в геометрии. Точка, прямая и плоскость. Понятие о геометрическом месте точек. Расстояние. Отрезок, луч. Ломаная. Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства. Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой. Многоугольники. Окружность и круг. Треугольник. Прямоугольные, остроугольные, и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинам сторон и углов треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. 9 Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция. Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника. Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число ; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности. Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника. Площадь круга и площадь сектора. Связь между площадями подобных фигур. 10 Элементы логики, комбинаторики, статистики и теории вероятностей Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история. Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий. Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности. Итоговая контрольная работа. Содержание программы элективного курса № Название (темы) модуля Количество часов 1. Алгебраические задания базового уровня 13 2. Геометрические задачи базового уровня 6 3. Реальная математика 6 4. Задания повышенного уровня сложности 6 5. Итоговое занятие 3 Общее количество часов 34 11 Модуль 1. Алгебраические задания базового уровня. Введение: цель и содержание курса, формы контроля. Обыкновенные и десятичные дроби. Стандартный вид числа. Округление и сравнение чисел. Буквенные выражения. Область допустимых значений. Формулы. Степень с целым показателем. Многочлены. Преобразование выражений. Разложение многочленов алгебраических на множители. дробей. Алгебраические Преобразования дроби. Сокращение рациональных выражений. Квадратные корни. Линейные и квадратные уравнения. Системы уравнений. Неравенства с одной переменной и системы неравенств. Решение квадратных неравенств. Последовательности и прогрессии. Рекуррентные формулы. Задачи, решаемые с помощью прогрессий. Числа на координатной прямой. Представление решений неравенств и их систем на координатной прямой. Функции и графики. Особенности расположения в координатной плоскости графиков некоторых функций в зависимости от значения параметров, входящих в формулы. Зависимость между величинами. Модуль 2. Геометрические задачи базового уровня. Треугольники, четырехугольники. Равенство треугольников, подобие. Формулы площади. Пропорциональные отрезки. Окружности. Углы: вписанные и центральные. Модуль 3. Реальная математика. Проценты. Составление математической модели по условию задачи. Текстовые задачи на практический расчет. Чтение графиков и диаграмм. Элементы комбинаторики, статистики и теории вероятностей. Выражение величины из формулы. 12 Задания повышенного уровня сложности. Преобразования алгебраических выражений. Уравнения, неравенства, системы. Исследование функции и построение графика. Кусочно-заданные функции. Построение графиков с модулем. Задачи на движение. Задачи на смеси, сплавы. Сложные проценты. Задачи на совместную работу. Задания с параметром: исследование графиков функций, решение уравнений и неравенств с параметром. Знаки корней квадратного трехчлена. Расположение корней квадратного трехчлена. Параметры a, b, c и корни квадратного трехчлена. Геометрические задачи. Итоговое занятие. Проведение итоговой контрольной работы в форме ОГЭ. Учебно-тематическое планирование № № занятия в занятия теме Тема занятия Модуль 1. Алгебраические задания базового уровня (13 часов) Вычисления (2 часа) 1 1 Обыкновенные и десятичные дроби. Стандартный вид числа. 2 2 Тренировочные варианты. Самостоятельная работа. Уравнения и неравенства (3 часа) 3 1 Линейные и квадратные уравнения. 4 2 Линейные и квадратные неравенства. Системы неравенств. 5 3 Тренировочные варианты. Самостоятельная работа. Координатная прямая. Графики (3 часа) 6 1 Числа на координатной прямой. Представление решений неравенств и их систем на координатной прямой. 7 1 Графики функций и их свойства. 8 2 Тренировочные варианты. Самостоятельная работа. 13 № № занятия в занятия теме Тема занятия Алгебраические выражения(2 часа) 9 Многочлены. Алгебраические дроби, степени. Допустимые 1 значения переменной. 10 Тренировочные варианты. Самостоятельная работа. 2 Последовательности (2 часа) 11 1 Числовые последовательности. Прогрессии. 12 2 Тренировочные варианты. Самостоятельная работа. 13 1 Обобщающий тест модуля «Алгебра» базового уровня. Модуль 2. Геометрические задачи базового уровня (6 часов) Подсчет углов(2 часа) 14 1 Треугольник. Четырехугольник. Окружность. 15 2 Тренировочные варианты. Самостоятельная работа. Площади фигур (2 часа) 16 1 Четырехугольники. Треугольник. Окружность и круг. 17 2 Тренировочные варианты. Самостоятельная работа. Выбор верных утверждений(1 час) 18 1 Тренировочные задания. 19 1 Обобщающий тест модуля «Геометрия» базового уровня. Модуль 3. Реальная математика (6 часов) Графики и диаграммы. Текстовые задачи (3 часа) 20 1 Чтение графиков и диаграмм. 21 2 Текстовые задачи на практический расчет. 22 3 Тренировочные варианты. Самостоятельная работа. Реальная планиметрия. Теория вероятностей (2 часа) 23 1 Решение задач практической направленности. 24 2 Элементы комбинаторики и теории вероятностей. 25 1 Обобщающий тест модуля «Реальная математика». 14 № № занятия в занятия теме Тема занятия Модуль 1 и 2. Задания повышенного уровня сложности (6 часов) 26 1 Преобразования алгебраических выражений. 27 2 Уравнения, неравенства, системы. 28 3 Исследование функции и построение графика. Задания с параметром. 29 4 Текстовые задачи. 30 5 Геометрические задачи 31 6 Геометрические задачи Итоговое занятие (3часа) 32-34 1-3 Итоговая контрольная работа Ожидаемые результаты Планируемые результаты обучения отражают следующие четыре категории познавательной области: Знание/понимание: владение термином; владение различными эквивалентными представлениями (например, числа); распознавание (на основе определений, известных свойств, сформированных представлений); использование различных математических языков (символического, графического), переход от одного языка к другому; интерпретация. Умение применить алгоритм: использование формулы как алгоритма вычислений; применение основных правил действий с числами, алгебраическими выражениями; решение основных типов уравнений, неравенств, систем, задач. Умение решить математическую задачу: задания, при решении которых требуется применение (актуализация) системы знаний; преобразование связей между известными фактами; включение известных понятий, приемов и способов решения в новые связи и отношения, умение распознать стандартную задачу в измененной формулировке. Применение знаний в жизненных, реальных ситуациях: задания, формулировка которых «облечена» в практическую ситуацию, знакомую учащимся и близкую их жизненному опыту. 15 СПИСОК РЕКОМЕНДУЕМОЙ УЧЕБНО-МЕТОДИЧЕСКОЙ ЛИТЕРАТУРЫ А.В. Фарков. Тесты по геометрии 7, 8, 9. Экзамен, 2014 Н.Б. Мельникова, Г.А. Захарова. Дидактические материалы по геометрии 7, 8, 9. М.: Экзамен, 2014 Проблемы реализации ФГОС при обучении математике в основной и старшей общеобразовательной школе: монография / коллектив авторов: Иванюк М.Е., Липилина В.В., Максютин А.А. – Самара: изд-во ООО «Порто-принт», 2014 – 338с. Тренировочные материалы для подготовки к ГИА по математике2014: дидактические материалы / сост.: А.А. Максютин, Ю.Н. Неценко, Т.П. Шаповалова. Самара: ООО «Издательство Ас Гард», 2013. 142с. Тренировочные материалы для подготовки к ГИА по математике2015: дидактические материалы / сост.: А.А. Максютин, Ю.Н. Неценко. - Самара: , 2014. 140с. А.А. Максютин. Математика-9. Учебное пособие для подготовки к выпускным экзаменам за 9 класс и вступительным экзаменам в лицеи, гимназии, математические классы. Самара, 2007.-422с ГИА – 2014: Математика: 9-й класс: Тренировочные варианты экзаменационных работ для проведения государственной итоговой аттестации в новой форме / авт.-сост. Е.А.Бунимович, Л.В. Кузнецова, Л.О. Рослова и др. – Москва: АСТ: Астрель, 2014 Математика. 9 класс. Подготовка к ГИА. Задания с параметром: теория, методика, упражнения и задачи. / Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на Дону, Легион, 2014 Математика. 9 класс. ГИА - 2015. Тренажер для подготовки к экзамену. Алгебра, геометрия, реальная математика: учебнометодическое пособие. / Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на Дону, Легион, 2014 Математика. 9 класс. Тематические тесты для подготовки к ГИА16 2015. Алгебра, геометрия, теория вероятностей и статистика: / учебно-методическое пособие. / Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на Дону, Легион, 2014 Математика. 9 класс. Подготовка к ОГЭ -2015. Учебнотренировочные тесты по новой демоверсии / Под ред. Ф.Ф. Лысенко, С.Ю. Кулабухова. – Ростов – на Дону, Легион, 2015 ОГЭ (ГИА-9). Математика. Основной государственный экзамен. Теория вероятностей и элементы статистики / А.Р. Рязановский, Д.Г. Мухин. – М.: Издательство «Экзамен», 2015 ОГЭ (ГИА-9) 2015. Математика. 3 модуля. Основной государственный экзамен 30 вариантов типовых тестовых заданий / Ященко И.В., Шестаков С.А. и др. – М.: Издательство «Экзамен», издательство МЦНМО, 2015. Интернет ресурсы для подготовки к ГИА Федеральный институт педагогических измерений (ФИПИ) www.fipi.ru http://www.gotovkege.ru/demos.html 17